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Abstract: Fed-batch processes are prevalent in biotechnological industries, but design of experi-
ments often results in sub-optimal conditions due to incomplete solution space characterization.
We employ a single-level dynamic control (DC) algorithm for dynamic flux balance analysis
(dFBA), enhancing efficiency by reducing Karush-Kuhn-Tucker (KKT) condition constraints
and adapting the algorithm for predicting optimal process length. In a growth-decoupled plasmid
DNA production case study, we predict the optimal feeding profile and switching time between
growth and production phase. Comparing our algorithm to its predecessor shows a speed-up of
at least a factor of four. When the process length is part of the objective function the speed-up
becomes considerably larger.
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1. INTRODUCTION

Contrary, to the often cumbersome and expensive design of
experiment studies, computer simulations of dFBA-based
process models are a cheap and comparatively easy way
to systematically sample the solution space for optimal
fed-batch process designs [Gotsmy et al., 2023]. They
can provide suggestions for setting control variables, for
example, the feed rate [Espinel-Ŕıos et al., 2024] or the
switch times of two-stage processes [Raj et al., 2020, Bauer
and Klamt, 2024].

Recently, more sophisticated process optimization algo-
rithms have been developed [Nakama and Jäschke, 2022,
de Oliveira et al., 2023]. Most importantly, they employ
KKT condition constraints and collocation techniques to
translate the dFBA process models into an non-linear
programming (NLP) problem which is solved with interior-
point methods. Unfortunately, these algorithms come with
a new set of challenges, especially their sensitivity to hy-
perparameters and improvable convergence.

Therefore, in this study, we adapt the dynamic control
flux balance analysis (dcFBA) algorithm from de Oliveira
et al. [2023]. Specifically, we reduce the number of KKT
condition constraints and reformulate the finite element
length constraints. These adaptations improve the general
convergence speed as well as performance for (fed-batch)
process length optimization.

2. THEORY

Here, we highlight the basic principles of our dcFBA
implementation. For clarity, Table 1 lists the dimensions
of vectors and matrices used throughout the section.

2.1 Standard dynamic flux balance analysis

Fed-batch process simulations involve estimating state
variables, such as biomass (X), substrate (e.g. glucose,
G), product (P ), and volume (V ) from an initial state at
a time t0 throughout the process length (T ). Differential
equations for these state variables typically read

Ẋ(t) = µ(t)X(t), X(t0) = X0, (1a)

Ṗ (t) = π(t)X(t), P (t0) = 0, (1b)

Ġ(t) = ϕ(t)gϕ − γ(t)X(t), G(t0) = G0, (1c)

V̇ (t) = ϕ(t), V (t0) = V 0. (1d)

Here, Ẋ, Ṗ , and Ġ represent the rates of change for
biomass, product, and substrate, respectively. The param-
eters µ, π, and γ denote the specific growth rate, produc-
tion rate, and substrate uptake rate, while ϕ represents the
feed rate, and gϕ is the substrate concentration in the feed
medium. For simplicity, we will assume P (t0) = t0 = 0.
Additionally, for any time-dependent variable x at time
tj , we adopt the shorthand notation x(tj) = xj .

In biotechnological production, engineers are typically
interested in the optimization of key process performance
metrics such as the final product titer

max T := P (T ) / V (T ), (2a)

the average productivity

max P := P (T ) / T, (2b)

and the average product yield

max Y := P (T ) /∆G, (2c)

or combinations thereof [Zhuang et al., 2013], subject to
the response of the cellular production host. Here, ∆G
denotes the total substrate consumed.
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Ẋ(t) = µ(t)X(t), X(t0) = X0, (1a)
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Table 1. Dimensions of vectors/matrices.
nR = nABCD, number of reactions; nM, number
of metabolites; nFE, number of finite elements.

Variable Shape

S (nM, nR)

v (nR, 1)

d ( 1, nR)

λ ( 1, nM)

Variable Shape

αlb, slb ( 1, nAB)

αub, sub ( 1, nAC)

τ, τ̂ (nFE, 1)

Fed-batch production processes typically have several con-
trol variables (u) that can be set by the process engineer.
Control variables, for example, comprise the feed rate
[Dietzsch et al., 2011], the initial values of state variables
[Gotsmy et al., 2023], or oxygen sparging and stirrer speed
[Erian et al., 2018]. Thus, the DC problem asks: what
values of u give an optimal process?

In dFBA, the host’s response to u is often approximated
through parsimonious flux balance analysis (pFBA):

min
vj

dvj + ε/2 vj · vj (3a)

s.t. Svj = 0 (3b)

vlb(u
j) ≤ vj ≤ vub(u

j). (3c)

Here, S denotes the net stoichiometric matrix of the cell,
vj represents the cellular flux distribution, and vlb(u

j)
and vub(u

j) are the lower and upper bounds of the flux,
respectively. The scaling parameter ε is typically assigned
a small value [Ploch et al., 2020, Nakama and Jäschke,
2022, de Oliveira et al., 2023].

The host’s influence on the medium is evaluated in nFE

consecutive intervals τ j , and then aggregated across the
entire process duration T :

X(T ) = X0 +

nFE∑
j=1

∆Xj , (4a)

P (T ) =

nFE∑
j=1

πj∆Xj/µj , (4b)

G(T ) = G0 + gϕ

nFE∑
j=1

ϕjτ j −
nFE∑
j=1

γj∆Xj/µj , (4c)

with

∆Xj :=
[
exp(µjτ j)− 1

]
xj−1, (4d)

τ j := tj − tj−1,

nFE∑
i=1

τ j = T. (4e)

The changes in the amounts (∆Xj and the summands in
(4b) and (4c)) result from constant cellular growth with
µj during the interval τ j . µj , πj , and γj are a subset of
the elements in the cellular flux vector vj .

Process (in)equality constraints depending on any sys-
tem’s variable may be added to the optimization problem,

a(·) = 0, b(·) ≤ 0. (5)

They typically comprise physical limitations (e.g., non-
negativity of concentrations), technical limitations (e.g.,
lower and upper bound of the reactor volume or aeration
rates), or biological limitations (e.g., maximal achievable
biomass concentrations).

The system of equations (3), (4), and (5), combined
with one of the objectives in (2), presents a bilevel opti-
mization problem, which is generally challenging to solve
[de Oliveira et al., 2023] even for state-of-the art algo-
rithms like DFBAlab [Gomez et al., 2014].

2.2 Dynamic control FBA

dcFBA addresses this issue by transforming the bi-level
optimization problem into a single non-linear optimization
problem,

max
u

F (·) (6a)

subject to

Svj = 0 (6b)

vlb(u
j) ≤ vj ≤ vub(u

j) (6c)

∇vjLj(vj ,λj ,αj
lb,α

j
ub) = 0 (6d)

sjlb(v
j ,vj

lb,α
j
lb) = sjub(v

j ,vj
ub,α

j
ub) = 0 (6e)

αj
lb,α

j
ub ≥ 0, j ∈ {1, . . . , nFE} (6f)

where the optimal solution v̄i = maxdvj + ε/2vj · vj of
the inner flux balance analysis (FBA) optimization in (3)
satisfies the KKT conditions (6d)-(6f) [de Oliveira et al.,
2023] with the Lagrangian

Lj(vj ,λj ,αj
lb,α

j
ub) = dvj + ε/2vj · vj

+ λjSvj + αj
lb(v

j
lb − vj) + αj

ub(v
j − vj

ub)
(7a)

and

sjlb := diag(αj
lb)(v

j
lb − vj) = 0, (7b)

sjub := diag(αj
ub)(v

j − vj
ub) = 0. (7c)

For numerical reasons, only KKT stationary conditions (6d)
and KKT nonnegativity conditions (6f) are implemented
as constraints. The KKT complementary slackness condi-
tions (6e) are incorporated into the optimization function
(6a) as a penalty term (S) [de Oliveira et al., 2023]:

max
u

ψ1F (·) + ψ2S s.t. (6b)-(6f) (8a)

where

S :=
1

nFEnR

nFE∑
j

nR∑
i

(
sjlb + sjub

)
i
. (8b)

S converges to 0 from negative values, therefore, S is
maximized in the objective function. To achieve a balanced
contribution of both terms, F and S, to the objective
function, they are weighted by the hyperparameters ψ1

and ψ2.

Including S as a penalty term has shown to overcome
linear independence constraint qualification (LICQ) vi-
olations similar to the definition of the pFBA (Equa-
tion 3) [Baumrucker et al., 2008]. In accordance with pre-
vious studies, we assume that the LICQ holds for dcFBA
[de Oliveira et al., 2023], however, a detailed analysis will
be the focus of future work.

The single-level dcFBA optimization reformulation sig-
nificantly improves optimization efficiency and thus ren-
ders more complex process optimization problems solvable
[de Oliveira et al., 2023].

Our study is based on the work done by de Oliveira et al.
[2023] and more detailed description of their dcFBA can be
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Table 1. Dimensions of vectors/matrices.
nR = nABCD, number of reactions; nM, number
of metabolites; nFE, number of finite elements.

Variable Shape

S (nM, nR)

v (nR, 1)

d ( 1, nR)

λ ( 1, nM)

Variable Shape

αlb, slb ( 1, nAB)

αub, sub ( 1, nAC)

τ, τ̂ (nFE, 1)

Fed-batch production processes typically have several con-
trol variables (u) that can be set by the process engineer.
Control variables, for example, comprise the feed rate
[Dietzsch et al., 2011], the initial values of state variables
[Gotsmy et al., 2023], or oxygen sparging and stirrer speed
[Erian et al., 2018]. Thus, the DC problem asks: what
values of u give an optimal process?

In dFBA, the host’s response to u is often approximated
through parsimonious flux balance analysis (pFBA):

min
vj

dvj + ε/2 vj · vj (3a)

s.t. Svj = 0 (3b)

vlb(u
j) ≤ vj ≤ vub(u

j). (3c)

Here, S denotes the net stoichiometric matrix of the cell,
vj represents the cellular flux distribution, and vlb(u

j)
and vub(u

j) are the lower and upper bounds of the flux,
respectively. The scaling parameter ε is typically assigned
a small value [Ploch et al., 2020, Nakama and Jäschke,
2022, de Oliveira et al., 2023].

The host’s influence on the medium is evaluated in nFE

consecutive intervals τ j , and then aggregated across the
entire process duration T :

X(T ) = X0 +

nFE∑
j=1

∆Xj , (4a)

P (T ) =

nFE∑
j=1

πj∆Xj/µj , (4b)

G(T ) = G0 + gϕ

nFE∑
j=1

ϕjτ j −
nFE∑
j=1

γj∆Xj/µj , (4c)

with

∆Xj :=
[
exp(µjτ j)− 1

]
xj−1, (4d)

τ j := tj − tj−1,

nFE∑
i=1

τ j = T. (4e)

The changes in the amounts (∆Xj and the summands in
(4b) and (4c)) result from constant cellular growth with
µj during the interval τ j . µj , πj , and γj are a subset of
the elements in the cellular flux vector vj .

Process (in)equality constraints depending on any sys-
tem’s variable may be added to the optimization problem,

a(·) = 0, b(·) ≤ 0. (5)

They typically comprise physical limitations (e.g., non-
negativity of concentrations), technical limitations (e.g.,
lower and upper bound of the reactor volume or aeration
rates), or biological limitations (e.g., maximal achievable
biomass concentrations).

The system of equations (3), (4), and (5), combined
with one of the objectives in (2), presents a bilevel opti-
mization problem, which is generally challenging to solve
[de Oliveira et al., 2023] even for state-of-the art algo-
rithms like DFBAlab [Gomez et al., 2014].

2.2 Dynamic control FBA

dcFBA addresses this issue by transforming the bi-level
optimization problem into a single non-linear optimization
problem,

max
u

F (·) (6a)

subject to

Svj = 0 (6b)

vlb(u
j) ≤ vj ≤ vub(u

j) (6c)

∇vjLj(vj ,λj ,αj
lb,α

j
ub) = 0 (6d)

sjlb(v
j ,vj

lb,α
j
lb) = sjub(v

j ,vj
ub,α

j
ub) = 0 (6e)

αj
lb,α

j
ub ≥ 0, j ∈ {1, . . . , nFE} (6f)

where the optimal solution v̄i = maxdvj + ε/2vj · vj of
the inner flux balance analysis (FBA) optimization in (3)
satisfies the KKT conditions (6d)-(6f) [de Oliveira et al.,
2023] with the Lagrangian

Lj(vj ,λj ,αj
lb,α

j
ub) = dvj + ε/2vj · vj

+ λjSvj + αj
lb(v

j
lb − vj) + αj

ub(v
j − vj

ub)
(7a)

and

sjlb := diag(αj
lb)(v

j
lb − vj) = 0, (7b)

sjub := diag(αj
ub)(v

j − vj
ub) = 0. (7c)

For numerical reasons, only KKT stationary conditions (6d)
and KKT nonnegativity conditions (6f) are implemented
as constraints. The KKT complementary slackness condi-
tions (6e) are incorporated into the optimization function
(6a) as a penalty term (S) [de Oliveira et al., 2023]:

max
u

ψ1F (·) + ψ2S s.t. (6b)-(6f) (8a)

where

S :=
1

nFEnR

nFE∑
j

nR∑
i

(
sjlb + sjub

)
i
. (8b)

S converges to 0 from negative values, therefore, S is
maximized in the objective function. To achieve a balanced
contribution of both terms, F and S, to the objective
function, they are weighted by the hyperparameters ψ1

and ψ2.

Including S as a penalty term has shown to overcome
linear independence constraint qualification (LICQ) vi-
olations similar to the definition of the pFBA (Equa-
tion 3) [Baumrucker et al., 2008]. In accordance with pre-
vious studies, we assume that the LICQ holds for dcFBA
[de Oliveira et al., 2023], however, a detailed analysis will
be the focus of future work.

The single-level dcFBA optimization reformulation sig-
nificantly improves optimization efficiency and thus ren-
ders more complex process optimization problems solvable
[de Oliveira et al., 2023].

Our study is based on the work done by de Oliveira et al.
[2023] and more detailed description of their dcFBA can be

found there. Although their algorithm works well for short
bioprocesses (i.e., T ≤ 10 h), its convergence becomes
problematic for longer bioprocess, typically fed-batches,
(i.e., T ≥ 30 h) if the temporal resolution (i.e. nFE/T ) is
kept constant. Additionally, their implementation of finite
element length bounds is impractical for process length
optimization.

In the following sections, we focus on our adaptations to
the algorithm. Henceforth, to increase the readability, we
omit the index j from constraints when it is obvious.

2.3 Reducing KKT Condition Constraints

Previously, the KKT condition constraints of all fluxes
of the metabolic model were included in the dcFBA
algorithm [de Oliveira et al., 2023]. However, in metabolic
modeling, for many fluxes no realistic constraints are
known, usually indicated by lower bounds of -1000 and
upper bounds of +1000 mmol g−1 h−1. The reactions of
a metabolic model can be sorted into four classes, A both
bounds are known, B only lower bounds are known, C only
upper bounds are known, and D no bounds are known.

Here we reduce the number of process optimization con-
straints in our dcFBA algorithm by only including KKT
condition constraints for reaction bounds that are known.
Taking the partial derivative gives

∂L
∂vA = dA + ε(vA)T + λSA − αA

lb+αA
ub = 0 (9a)

∂L
∂vB = dB + ε(vB)T + λSB − αB

lb = 0 (9b)

∂L
∂vC = dC + ε(vC)T + λSC +αC

ub = 0 (9c)

∂L
∂vD = dD + ε(vD)T + λSD = 0 (9d)

This method reduces the number of α-variables from 2nR

to 2nA + nB + nC.

2.4 Rescaling Moving Finite Elements

In the previous approach, the lengths τ of finite element
(FE) were not fixed but constrained by absolute lower and
upper bounds. Yet, their sum added up to the total process
length (T ),

τlb ≤ τ j ≤ τub, T =

nFE∑
j

τ j . (10)

Setting upper and lower bounds on FE lengths serves
two purposes: (1) enabling the optimization of total pro-
cess length, and (2) managing sudden and strong rate
changes during optimization [de Oliveira et al., 2023]. For
biotechnological process optimization, both functionalities
are important. Yet, relaxing the bounds on τ j can lead to
poor convergence, numerical issues, and even local infea-
sibility of the solver (see Section 4). Therefore, we limit
the relative deviation of each FE from the average length
T/nFE,

τ̂ jlb T

nFE
≤ τ j ≤

τ̂ jub T

nFE
, T =

nFE∑
j

τ j , (11)

Fig. 1. Production envelope of pDNA production
[Gotsmy et al., 2023]. π(t, s) is linearly dependent on
fed-batch time (t) and increases by a step function
during sulfate (S) starvation. A π(t, s) at different
constant process times t. B π(t, s) of an example
process where s = S/V = 1mmol L−1 is reached after
t = 23.1 h. The dotted lines indicate π(t) before and
during S limitation.

rather than the absolute length as in (10). Therefore, in
our implementation, lower and upper bounds for T and τ̂
can be set separately for reasons (1) and (2), respectively.
Our adaptation increases the number of unknown variables
for optimization by one (i.e., the value for T ).

2.5 Adapted Dynamic control FBA

Finally, the derived constraints are integrated into our
adapted dcFBA optimization problem,

max
u,τ̂,T

ψ1F (·) + ψ2S (12a)

subject to FBA constraints

Sv = 0 (12b)

vlb ≤ v ≤ vub (12c)

subject to KKT condition constraints

∇vL = 0 (12d)

αlb,αub ≥ 0 (12e)

subject to moving FE constraints

τ̂lb T/nFE ≤ τ ≤ τ̂ub T/nFE (12f)

1Tτ = T (12g)

Tlb ≤ T ≤ Tub (12h)

and subject to custom process (in)equality constraints

a(·) = 0, b(·) ≤ 0. (12i)

The KKT complementary slackness condition penalty
term incorporated into the optimization function (12a)
now reads:

S :=
1

nFE

nFE∑
j

[
1

nAB

nAB∑
i

(
sjlb

)
i
+

1

nAC

nAC∑
i

(
sjub

)
i

]
(12j)
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Fig. 2. Comparison of the plasmid DNA (pDNA) production processes optimizing the titer (T , blue) and
the productivity (P, green) by v2023 (darker shade) and v2024 (lighter shade), respectively. The top panels show
integrated process state variables (sulfate s, biomass x, product p), and the bottom panels show rates (feed rate
ϕ, growth rate µ and product synthesis rate π). The initial concentration of sulfate (panel A) and the feed rate
(panel D) comprise the control variables (u) of the DC problem (Equation 12). For maximization of the titer both
algorithms give the same result, however, there is a small difference for the maximization of productivity.

where nFE, nAB, and nAC are used to normalize for the
number of FEs and the number of lower and upper bound
complementary slackness conditions, respectively.

3. METHODS

3.1 Plasmid DNA Production

In a prior study, we found that limiting sulfate in the
reactor medium uncouples plasmid DNA (pDNA) pro-
duction from biomass growth [Gotsmy et al., 2023]. Us-
ing dFBA, we designed and validated an optimal pDNA
production process. Simulations were performed with the
E. coli model iML1515 [Monk et al., 2017] where pDNA
synthesis was added expanding the model’s size to nR =
2714, nM = 1878.

To reduce the size of the genome-scale metabolic model
(GSMM), we reran (classical) dFBA simulations for con-
trol and sulfate-limited processes from our prior study.
At each evaluation time point, a lexicographic FBA was
calculated followed by a pFBA. Reactions with no flux in
any evaluation step were removed, resulting in a condensed
GSMM with a size of nR = 470 and nM = 454.

Analysis of the experimental data [Gotsmy et al., 2023]
showed that the pDNA synthesis rate (π) linearly de-
creased with process time and increased step-wise upon
sulfate (S) limitation (Figure 1). For numerical reasons
and differentiability, the step function was implemented
as a tanh(·) with midpoint at s = S/V = 1mmol L−1.

3.2 Implementation of the Algorithm

The dcFBA algorithm was implemented following
de Oliveira et al. [2023] using the Julia package JuMP [Lu-
bin et al., 2023] and the nonlinear IPOPT solver [Wächter
and Biegler, 2006]. Unless stated otherwise, all simulations
used nFE = 20 FEs and the IPOPT solver options were set
as follows: "tol" => 1e-4, "acceptable iter" => 15,
and "acceptable tol" => 1e-2.

The complete code for this study is available at https://
github.com/Gotsmy/dcFBA.

4. RESULTS

In the following, we compare our adapted dcFBA im-
plementation (referred to as v2024) with the previously
published version [de Oliveira et al., 2023] (referred to as
v2023). We conducted optimization for two pDNA pro-
duction processes, aiming for maximal titer and maximal
productivity using both algorithms.

Table 2 provides an overview of the algorithmic differences
and optimization results for all four simulations. Columns
nA to nD show the number of reactions per constraint
class, as explained in the Methods section. In the v2023
algorithm, all reactions are treated as fully constrained,
despite their bounds being set to biologically unrealistic
±1000mmol g−1 h−1, placing them in class A. The number
of dcFBA Lagrange multipliers (i.e, λ, αlb, αub) per
simulation is calculated as

nKKT = nFE(2nA + nB + nC + nM). (13)
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In a prior study, we found that limiting sulfate in the
reactor medium uncouples plasmid DNA (pDNA) pro-
duction from biomass growth [Gotsmy et al., 2023]. Us-
ing dFBA, we designed and validated an optimal pDNA
production process. Simulations were performed with the
E. coli model iML1515 [Monk et al., 2017] where pDNA
synthesis was added expanding the model’s size to nR =
2714, nM = 1878.

To reduce the size of the genome-scale metabolic model
(GSMM), we reran (classical) dFBA simulations for con-
trol and sulfate-limited processes from our prior study.
At each evaluation time point, a lexicographic FBA was
calculated followed by a pFBA. Reactions with no flux in
any evaluation step were removed, resulting in a condensed
GSMM with a size of nR = 470 and nM = 454.

Analysis of the experimental data [Gotsmy et al., 2023]
showed that the pDNA synthesis rate (π) linearly de-
creased with process time and increased step-wise upon
sulfate (S) limitation (Figure 1). For numerical reasons
and differentiability, the step function was implemented
as a tanh(·) with midpoint at s = S/V = 1mmol L−1.

3.2 Implementation of the Algorithm

The dcFBA algorithm was implemented following
de Oliveira et al. [2023] using the Julia package JuMP [Lu-
bin et al., 2023] and the nonlinear IPOPT solver [Wächter
and Biegler, 2006]. Unless stated otherwise, all simulations
used nFE = 20 FEs and the IPOPT solver options were set
as follows: "tol" => 1e-4, "acceptable iter" => 15,
and "acceptable tol" => 1e-2.

The complete code for this study is available at https://
github.com/Gotsmy/dcFBA.

4. RESULTS

In the following, we compare our adapted dcFBA im-
plementation (referred to as v2024) with the previously
published version [de Oliveira et al., 2023] (referred to as
v2023). We conducted optimization for two pDNA pro-
duction processes, aiming for maximal titer and maximal
productivity using both algorithms.

Table 2 provides an overview of the algorithmic differences
and optimization results for all four simulations. Columns
nA to nD show the number of reactions per constraint
class, as explained in the Methods section. In the v2023
algorithm, all reactions are treated as fully constrained,
despite their bounds being set to biologically unrealistic
±1000mmol g−1 h−1, placing them in class A. The number
of dcFBA Lagrange multipliers (i.e, λ, αlb, αub) per
simulation is calculated as

nKKT = nFE(2nA + nB + nC + nM). (13)

Table 2. Algorithmic Comparison of a previously published dcFBA algorithm ([de Oliveira
et al., 2023], v2023) and our new method (v2024). We tested the optimization of titer (T ) and

productivity (P) in our pDNA production case study.

Objective (F ) Algorithm nA nB nC nD nKKT Runtime [min] T [g L−1] P [g h−1]

T v2024 1 290 0 179 14920 7.6 7.64 0.22
T v2023 470 0 0 0 27880 29.2 7.66 0.22
P v2024 1 290 0 179 14920 3.3 4.75 0.42
P v2023 470 0 0 0 27880 36.2 4.92 0.42

The corresponding column in Table 2 reveals that v2024
reduces these multipliers by 54% compared to v2023 in
this case study.

Optimizing the control problem involves optimizing each
added multiplier during the simulation, contributing to
computational costs. Notably, in the two optimization
scenarios for productivtiy (P) and titer (T ), both imple-
mentations converged to similar values. However, v2024
outperforms v2023, being 11 and 4 times faster in the
respective scenarios (see Table 2).

For the maximization of titer (T ), both v2023 and v2024
not only converged to the same values but also identified
the same optimal process (Figure 2, light and dark blue
line). Moreover, both v2023 and v2024 successfully pre-
dicted a sulfate-limited process for optimal productivity
(P) that shows identical characteristics to our previously
experimentally implemented process [Gotsmy et al., 2023]
(Figure 2, light and dark green line).

To analyze the difference between v2024 and v2023, we
investigated variations in the length distributions of FEs

Fig. 3. Comparison of FE lengths of Pv2023 (panel A)
and Pv2024 (panel B). FEs colored green are equal
to the lower length bound, FEs colored in blue are
equal to the upper length bound, and grey FEs are
in between. The grey dashed line indicates the switch
from sulfate excess to sulfate limitation at t = 4.3 h.

between both versions. Figure 3 compares FE lengths (τ)
for v2023 (panel A) and v2024 (panel B) when maximizing
P.

Both versions exhibit a trend to shorter FE lengths ini-
tially, with FE becoming longer after growth cessation
(t ≥ 4.3 h). However, in v2023, the average length of FE
(1.1 h) after growth cessation is over 3.5 times larger than
during the growth phase. This disparity leads to numeri-
cal and accuracy challenges, causing poor convergence of
the IPOPT solver in v2023. In contrast, v2024, with its
ability to independently set (tighter) bounds for T and
τ j , exhibits smaller difference in FE lengths (Figure 3B),
effectively avoiding numerical difficulties.

5. DISCUSSION

Designing optimal bioprocess is a grand challenge in indus-
trial applications, often addressed by using dFBA. Opti-
mizing bioprocesses with dFBA introduces computational
complexities due to the bi-level nature of the problem.
To mitigate this challenge, one strategy involves utilizing
the KKT conditions, allowing for a transformation into a
single-level but still non-linear optimization problem. De-
spite this simplification, the optimization remains compu-
tationally costly, with the attainment of a feasible solution
heavily reliant on the algorithm’s hyperparameters.

Our results underscore these two critical considerations:
(i) The necessity to identify and eliminate non-limit-
ing or redundant constraints for accelerated performance.
(ii) The importance of tightly controlling the algorithm’s
hyperparameters to prevent numerical artifacts.

In standard GSMMs, reversible and irreversible reactions
are commonly bounded within [-1000, 1000] and [0, 1000]
mmol g−1 h−1, respectively, approximating the diffusion
limit (private communication). These bounds are mostly
active when the solution is otherwise unbounded, serving
merely as indicators. This presents numerical challenges
by inflating the number of constraints and computational
costs, impacting both dFBA and FBA. While the impor-
tance of eliminating redundant constraints is recognized
[Estinmgsih et al., 2019] and has been partially addressed
[Nakama and Jäschke, 2022], the impact of default flux
bounds has been overlooked. Our study demonstrates the
effectiveness of removing these bounds; however, in rare
cases, it may result in unbounded solutions. Utilizing
formal methods [Estinmgsih et al., 2019] to identify re-
dundant constraints mitigates this problem. Moreover, we
believe that other approaches for dFBA for process opti-
mization (e.g., [Scott et al., 2018]) or even the calculation
of a standard FBA can profit from our proposed constraint
reduction strategy.
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While the inclusion of moving FEs in the DC problem
increases its non-linearity, past cases have shown promis-
ing results [Gao et al., 2023]. However, without algorith-
mic incentives to minimize the discretization errors of
the FEs, numerical errors may accumulate. Particularly
when FE length bounds are broad due to process length
optimization (Figure 3A). To mitigate this risk, setting
bounds on relative FE lengths proves effective. This en-
sures a narrower distribution of FE lengths without overly
constraining the total process length. Consequently, our
algorithm is well-suited for optimizing bioprocesses where
total process time (T ) is a part of the objective function.

Recently, an enhanced moving FE method which takes
numeric errors into account has been developed [Gao et al.,
2023], which will be part of future work.

6. CONCLUSION

Here we present an improved dynamic control flux balance
analysis (dcFBA) algorithm. We showcase that strategic
reformulation of the problem can decisively improve per-
formance as well as convergence and accuracy compared
to previous implementations. Overall, we hope that with
careful initialization and selection of hyperprameters, this
algorithm will offer a valuable tool for simulating and
designing a wide range of bioprocesses.
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