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2,3-Butanediol is a valuable raw material for many industries. Compared to its classical production from 
petroleum, novel fermentation-based manufacturing is an ecologically superior alternative. To be also economic-

ally feasible, the production bioprocesses need to be well optimized.

Here, we adapted and applied a novel process optimization algorithm, dynamic control flux-balance analysis 
(dcFBA), for 2,3-butanediol production in E. coli. First, we performed two-stage fed-batch process simulations 
with varying process lengths. There, we found that the solution space can be separated into a proportionality and 
a trade-off region.

With the information of the simulations we were able to design close-to-optimal production processes for 
maximizing titer and productivity, respectively. Experimental validations resulted in a titer of 43.6 ± 9.9 g L−1

and a productivity of 1.93 ± 0.08 g L−1 h−1. Subsequently, we optimized a continuous two-reactor process setup 
for 2,3-butanediol productivity. We found that in this mode, it is possible to increase the productivity more than 
threefold with minor impact on the titer and yield.

Biotechnological process optimization is cumbersome, therefore, many processes are run in suboptimal 
conditions. We are confident that the method presented here, will help to make many biotechnological 
productions economically feasible in the future.
1. Introduction

2,3-Butanediol is an important raw material in the chemical, phar-

maceutical, cosmetics, agricultural, and food industries [2–4]. For ex-

ample, it is used to produce synthetic rubber, fuel additives, perfumes, 
antifreeze agents, foods and pharmaceuticals [2,4]. Fermentation-based 
2,3-butanediol production is due to its economic and environmental sus-

tainability an attractive alternative to petroleum-derived 2,3-butanediol 
[3].

There are several natural 2,3-butanediol producers, for example, 
from the genera Klebsiella [5,6], Enterobacter [7,8], and Bacillus [3]. 
They use the 2,3-butanediol production pathway to prevent acidifica-

tion [9], to regulate their internal NADH/NAD+ balance [10], and to 
store carbon [11].

Natural producers have several drawbacks. They often require com-

plex growth media and may be pathogenic [1,2]. Therefore, metabolic 
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engineers have introduced genes for the 2,3-butanediol synthesis path-

way into more commonly used organisms, such as Lactobacillus lactis

and Saccharomyces cerevisiae [3]. For instance, Erian et al. [1] intro-

duced three genes (budaA, budB, budC) from Enterobacter cloacae subsp. 
dissolvens into E. coli (indicated by red boxes in Fig. 1).

To make fermentation-based 2,3-butanediol a viable raw material for 
industry, large quantities must be produced quickly. Many studies focus 
on optimizing titer and yield, but productivity is equally important as 
it impacts the reactor size, which is a major investment cost in large-

scale production plants [12]. As a rule of thumb, productivities below 
2 g L−1 h−1 are considered uncommercializable [12].

Generally, 2,3-butanediol production rates are higher in microaer-

obic conditions, compared to fully aerobic ones [1]. This is due to the 
NAD+ regenerating properties of budC in the 2,3-butanediol production 
pathway (Fig. 1). Conversely, growth rates are lower in microaerobic 
than in aerobic conditions. This may favor the design of two-stage pro-
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Fig. 1. Selected metabolic reactions of the 2,3-butanediol production model of Escherichia coli (E. coli) 445_EdissΔ4 [1]. Gene deletions (indicated by red 
crosses) and insertions (indicated by red boxes) were performed as described by Erian et al. [1]. In the resulting model, the NADH produced in the glycolysis can 
only be regenerated over respiration (requires a flux in 𝜉) or production of 2,3-butanediol (requires a flux in 𝛽). Broken arrows indicate multi-step pathways.
cesses for the best production conditions [13–15]. In these processes, 
a high cell density is achieved in an initial first stage, then bioprocess 
controls are switched to induce product formation in the second stage.

Additional methods for increasing the performance of 2,3-butanediol 
production processes include growth medium engineering [4], meta-

bolic enzyme knockout and overexpression [1,4], and enforced ATP 
wasting [14,16]. Moreover, mathematical models of (genome scale) 
metabolic networks can help to uncover new strategies for increasing the 
production [17,18]. For example, in a study for plasmid DNA produc-

tion, theoretical analysis predicted a new method of growth decoupling 
via sulfate limitation [19]. Other methods comprise the discovery of 
optimal two-stage fermentations in batch processes [20], the optimiza-

tion of feed rate and temperatures [21], the approximation of metabolic 
fluxes by neural networks in hybrid models [22], and network response 
analysis for rational strain engineering [23].

Another approach to improve the economic feasibility of biotechno-

logical 2,3-butanediol production is the use of cheaper carbon sources. 
For example, sugar molasse medium compositions were optimized for 
2,3-butanediol producing strains of Enterobacter ludwigii [24] and Vibrio 
natriegens [25]. Moreover, downstream processing of the fermentation 
broth requires precise engineering [26].

In this study, we apply a state-of-the-art process optimization algo-

rithm to improve the production of 2,3-butanediol in E. coli. First, we 
construct a metabolic model of the high-2,3-butanediol producing strain 
445_EdissΔ4 from Erian et al. [1]. Subsequent optimization elucidates 
the process solution space, which can be separated into a proportion-

ality and a trade-off region. Furthermore, it predicts a big potential in 
increasing the productivity. Conducted validation experiments under-
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line the precision of the simulations.
2. Methods

2.1. Theoretical analysis

2.1.1. Metabolic model construction

To perform our theoretical analysis, we first reconstructed a meta-

bolic model that reflected the (engineered) pathways of the 2,3-

butanediol-producing E. coli 445_EdissΔ4 from reference [1], using the 
E. coli core model from Orth et al. [27]. To adjust it to the genotype of the 
highly 2,3-butanediol-producing strain 445_EdissΔ4 [1], several reac-

tions were deleted and introduced. To limit the possibility of anaerobic 
NAD+ regeneration, the genes adhE, ldhA, and frdA (corresponding to 
ethanol, lactate, and succinate production, respectively) were deleted. 
Additionally, pta, a gene of the acetate excretion pathway, is knocked 
out. Subsequently, reactions for the genes budB, budA, and budC rep-

resenting the 2,3-butanediol production pathway were added to the 
metabolic model. Importantly, budC reintroduces the ability of anaer-

obic NAD+ regeneration via the reduction of acetoin to 2,3-butanediol 
[1]. A visualization of relevant metabolic reactions is given in Fig. 1.

2.1.2. Production envelope definition

We used experimental data from a previous study where E. coli

445_EdissΔ4 was grown in a two-stage (first aerobic, then microaero-

bic) process [1]. As these two conditions represent different metabolic 
states, following molecule uptake and secretion rates were fitted once 
per condition: glucose (𝛾), acetoin (𝛼), 2,3-butanediol (𝛽), and diols 
(𝛿 = 𝛼 + 𝛽) as well as the growth rate (𝜇). By setting the fitted rates 
as bounds of the metabolic model, the minimal oxygen uptake rate (|𝜉|) 
for both conditions was calculated with flux balance analysis (FBA) [28]

using CobraPy [29].

To create a continuous production envelope (PE) from the previously 
calculated feasible points we assumed a linear dependence of 𝛾(𝜇) and 

𝛿(𝜇). The feasibility of all points along this line was verified with FBA.
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2.1.3. Fed-batch process simulations

Process simulations were performed with an adapted algorithm for 
dynamic control flux balance analysis (dcFBA) [30]. dcFBA is a handy 
way of translating the bi-level optimization problem of dynamic flux 
balance analysis (dFBA) and process optimization into a single-level 
problem. This significantly improves convergence and results, especially 
in longer, more complex fed-batch simulations [30,31].

Control problem Optimizing the dcFBA simulations involves estimating 
state variables from an initial state at time 𝑡0 = 0 throughout the pro-

cess length (𝑇 ). In this case study, the state variables are: biomass (𝑋), 
2,3-butanediol (𝐵), acetoin (𝐴), and the consumed glucose (𝐺con). The 
differential equations of the state variables read

𝑋̇(𝑡) = 𝜇(𝑡)𝑋(𝑡), 𝑋(𝑡0) =𝑋0, (1a)

𝐵̇(𝑡) = 𝛽(𝑡)𝑋(𝑡), 𝐵(𝑡0) = 0, (1b)

𝐴̇(𝑡) = 𝛼(𝑡)𝑋(𝑡), 𝐴(𝑡0) = 0, (1c)

𝐺̇con(𝑡) = 𝛾(𝑡)𝑋(𝑡), 𝐺con(𝑡0) = 0. (1d)

Here, 𝑋̇, 𝐵̇, 𝐴̇, and 𝐺̇con represent the rates of change for biomass, 2,3-

butanediol, acetoin, and consumed substrate, respectively. The param-

eters 𝜇, 𝛽 = 𝛿 − 𝛼, 𝛼, and 𝛾 denote the specific growth rate, production 
rates for 2,3-butanediol and acetoin, and substrate uptake rate.

The dynamic control problem derived from [30] reads: maximize the 
objective function 𝐹 (⋅) over the control variable vector μ (i.e., a growth 
rate value per finite element of the simulation)

max
μ

𝐹 (⋅) (2a)

subject to (1) FBA constraints and FBA optimality constraints (i.e., KKT 
conditions constraints) per finite element, (2) moving finite elements 
length constraints, (3) orthogonal collocation of the differential equa-

tion, (4) a maximum of consumed glucose,

𝐺con ≤ const. (2b)

(5) a fixed process length,

𝑇 = const. (2c)

and (6) a upper and lower bound of growth rate control variables 𝜇 ∈ μ

𝜇lb ≤ 𝜇 ≤ 𝜇ub. (2d)

In the following paragraphs, parts of the control problem are explained 
in more detail. For even more information regarding the definition and 
optimization of dcFBA, we refer the readers to [30].

Process target metrics In this study, we were interested in the optimiza-

tion of two process performance metrics, the final product titer

 ∶=
𝑃 (𝑇 )
𝑉 (𝑇 )

, (3a)

and the average productivity

 ∶=
𝑃 (𝑇 )
𝑇

. (3b)

subject to the response of the cellular production host. Additionally, the 
product-to-substrate yield

 ∶=
𝑃 (𝑇 )
𝐺con(𝑇 )

, (3c)

is often mentioned in literature [32].

Objective function Here, we adopted the objective function 𝐹 of the 
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dcFBA by adding a third term,
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Fig. 2. Fitted PE from the two-stage 2,3-butanediol production process re-

ported in [1]. Markers indicate values fitted from the experimental data for 
the aerobic and microaerobic stage separately. Full lines represent weighted av-

erages along 𝜇 between them, while the dotted line shows values calculated by 
FBA. As per convention, negative values indicate uptake from, and positive val-

ues indicate excretion into the culture medium.

𝐹 ∶= 𝜓1𝐹1 +𝜓2𝐹2 +𝜓3

𝑇

∫
𝑡0

𝐹̇3 d𝑡 (4)

where 𝐹1 and 𝐹3 are one or a combination of state variables and 𝐹2 is 
the complementary slackness of the dual FBA formulation of the dcFBA 
[30]. Additionally, 𝜓1, 𝜓2, and 𝜓3 are scaling parameters. Concretely 
in this study, 𝐹3 = 𝑃 , 𝜓2 = 101, 𝜓3 = 10−1, and 𝜓3 ∈

{
100,101

}
for 

𝐹1 ∈ { ,}, respectively.

Control variables We used the specific growth rate 𝜇 as control vari-

able for the optimization. The integration of the differential equations 
was performed with orthogonal collocation [30] over 𝑛FE = 30 finite 
elements. For each finite element, one value of 𝜇 was optimized. We 
emphasize that the control variable 𝜇 is a proxy for the oxygen uptake 
rate 𝜉 (which is in practice controlled via the dissolved oxygen level). 
However, 𝜇, 𝛿, and 𝛾 are linearly dependent on each other, while 𝜉 is 
not (Fig. 2). For the ease of optimization, we, therefore, chose to im-

plement the PE in the dcFBA as a set of linear constraints. The value of 
𝜉 can be easily extracted from the PE and the corresponding optimized 
values of 𝜇.

Metabolic model Here, we use the stoichiometric matrix derived from 
the E. coli core model reconstructed in Section 2.1.1. Generally, dcFBA is 
fully compatible with using genome-scale metabolic models, however, 
we observed that the size of the stoichiometric matrix correlates with the 
required optimization time [30]. Therefore, if no core model is available, 
we recommend first identifying (exchange) rates of interest and then 
reducing the model size. This can be done by, for example, performing 
parsimonious FBA on different points of the production envelope and 
then discarding reactions that never carry any flux.

Process solution space To map the process solution space, following con-

straints of the dcFBA were varied: 𝐺con ∈ {200, 175} g, 𝜇lb between 
0.005 and 0.189 h−1 in 11 equidistant steps, and 𝑇 between 10 and 23.5 h
in 10 equidistant steps and between 25 and 46 h in 8 equidistant steps. 

Moreover, we optimized for the titer  and productivity  .
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2.1.4. Continuous process simulations

We optimized the steady state metabolic rates for two continuous 
reactors, as well as the feed flux (𝜙) and the glucose concentration in 
the feed (𝐺𝜙).

Differential equations The differential equations for the continuous two-

reactor setup read

Reactor 1⎛⎜⎜⎜⎝
𝐴̇1
𝐵̇1
𝑋̇1
𝐺̇1

⎞⎟⎟⎟⎠ = 𝜙
⎛⎜⎜⎜⎝

−𝐴1
−𝐵1
−𝑋1

𝐺𝜙 −𝐺1

⎞⎟⎟⎟⎠+𝑋1

⎛⎜⎜⎜⎝
𝛼1
𝛽1
𝜇1
𝛾1

⎞⎟⎟⎟⎠ = 𝟎 (5a)

Reactor 2⎛⎜⎜⎜⎝
𝐴̇2
𝐵̇2
𝑋̇2
𝐺̇2

⎞⎟⎟⎟⎠ = 𝜙
⎛⎜⎜⎜⎝
𝐴1 −𝐴2
𝐵1 −𝐵2
𝑋1 −𝑋2
𝐺1 −𝐺2

⎞⎟⎟⎟⎠+𝑋2

⎛⎜⎜⎜⎝
𝛼2
𝛽2
𝜇2
𝛾2

⎞⎟⎟⎟⎠ = 𝟎 (5b)

where the indices 1 and 2 represent the two reactors.

Objective function The objective function for the continuous two-

reactor simulations reads

max 𝜓1𝐹1 +𝜓2𝐹2 (6)

where 𝐹1 is one or a combination of state variables, 𝐹2 is the comple-

mentary slackness of the dual FBA formulation of the dcFBA and 𝜓1 and 
𝜓2 are scaling parameters. Concretely in this study, 𝜓1 = 100, 𝜓2 = 10−2, 
and 𝐹1 ∈

{
𝐵2, 𝜙𝐵2

}
for titer and productivity optimization, respectively 

[33].

Numerical integration Subsequent to the optimization of the steady 
state, numerical integration of the continuous two-reactor setup was per-

formed with SciPy [34]. The initial concentration of 𝑋1(𝑡 = 0) was set 
to the steady-state value, all other initial concentrations were set to 0.

2.2. Validation experiments

To confirm the predictions of the dcFBA simulations, validation ex-

periments were performed in duplicates.

2.2.1. Upstream process

Cultivations of E. coli W 445_EdissΔ4 were performed in duplicates 
analogous to Erian et al. (2018) [1] in a 1.2 L DASGIP Parallel Bioreactor 
system with 0.5 L working volume at 37 ◦C and pH 7. After a batch with 
chemically defined medium containing 50 g L−1 glucose [1], cells were 
fed multiple times with a glucose-medium solution to approx. 50 g L−1

whenever glucose was depleted. Aerobic conditions in stage S1 were 
maintained by adjusting stirrer speed and aeration rates automatically 
to keep the dissolved oxygen level above 30%. Microaerobic conditions 
(stage S2) were established by reducing the stirrer speed to 400 rpm
and the aeration rate to 1 vvm. The switch from stage S1 to S2 was done 
for the control (CTL) and productivity optimized cultivations (MXP) at 
batch end (19.8 h, including lag phase) and with a 5 h delay (24.7 h, 
including lag phase), respectively.

2.2.2. Analysis

Glucose, acetoin and 2,3-butanediol concentrations were determined 
by HPLC analysis (Shimadzu, Korneuburg, Austria) with an Aminex 
HPX-87H column (300 × 7.8 mm, Bio-Rad Laboratories, Hercules, CA) 
operated at 60 ◦C with 6mM H2SO4 as mobile phase and a flow rate of 
0.6mLmin−1 for 30min. Peaks were detected and quantified with an RI 
detector or an UV lamp at 254 nm. To determine the biomass concentra-

tion, 2mL culture broth was centrifuged for 5min at 10 000 g at 4 ◦C, 
the pellet was washed once with deionized water and dried for 48 h at 
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100 ◦C. Biomass was determined in duplicates.
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2.2.3. Lag phase correction

For productivity calculation and comparison with simulations, we 
used a lag-free process length (𝑇 ) which was estimated from the exper-

imental process length (𝑇L) as

𝑇 = 𝑇L − 𝑡L = 𝑡S1 + 𝑡S2 (7a)

where 𝑡S1 and 𝑡S2 are the lengths of the (lag-free) aerobic stage I and the 
microaerobic stage 2. The lag phase length (𝑡L) was calculated over an 
assumed exponential growth curve of the (aerobic) stage 1

𝑡L = 𝑡LS1 −

ln

[
𝑋S1

𝑋0

]
𝜇S1

(7b)

where 𝑋S1 and 𝑋0 is the biomass at the beginning and end of stage 1, 
𝜇S1 is the fitted exponential growth rate of stage 1, and 𝑡LS1 is the length 
of the uncorrected stage 1.

3. Results

We aim to design an optimal fermentation process for 2,3-butanediol 
production. Before doing so, we first need to characterize cellular behav-

ior in the reference process (REF) [1]. In this process, 2,3-butanediol 
production occurs in two stages:

• Stage 1 (S1): Biomass is rapidly produced under aerobic conditions.

• Stage 2 (S2): Under microaerobic conditions, growth slows signifi-

cantly, and the accumulated acetoin is rapidly converted into 2,3-

butanediol. At the same time, de novo synthesis of 2,3-butanediol 
continues at a constant rate until the process is terminated.

3.1. Production envelope

We analyze the experimental data for each state separately to deter-

mine uptake, secretion, and growth rates. In the constructed production 
envelope (PE) (Fig. 2), we find that for each stage all rates remain con-

stant over time (Supplementary Fig. S1) with one exception: the acetoin 
exchange rate 𝛼. During the aerobic stage acetoin is constantly secreted 
(𝛼 > 0). However, when oxygen sparging throttles down, acetoin is ini-

tially consumed (𝛼 < 0) but depleted quickly (in ≤ 2.8 h) leading to a 
flux of 𝛼 = 0 (Supplementary Fig. S1K and L). Therefore, only a mini-

mal value of 𝛼 is shown in Fig. 2.

We assumed that the transition between the aerobic and microaer-

obic flux states follows a straight line, characterized by linear relation-

ships between 𝛾(𝜇), min𝛼(𝜇), and 𝛿(𝜇) (the corresponding reactions are 
shown in Fig. 1).

To check our model’s consistency, we used flux balance analysis 
(FBA) to calculate the minimally required oxygen uptake rate |𝜉(𝜇)|
(Fig. 2). We find that oxygen uptake aligns with experimental obser-

vations [1]: the fitted rates from the microaerobic stage require less 
oxygen uptake than those from the aerobic stage. Since 𝜉 is nonlinear, 
for further analyses, we use 𝜇 as the independent variable.

3.2. Fed-batch process simulations

To further validate our fitted rates, we evaluated whether the PE de-

fined above (Fig. 2) could accurately replicate a real production process 
(i.e., REF) [1] in silico. For a fair comparison, we adjusted the exper-

imental data to account for the observed lag time (𝑡L), as detailed in 
the Methods Section (Supplementary Fig. S2 and Table S1). This cor-

rection aligns the start of the simulation with the onset of exponential 
growth in the experimental data, ensuring precise comparison between 
the simulated and experimental results.

In Fig. 3, we compare the lag-corrected experimental values (mark-
ers) with the process simulation (full line) of the reference process (REF) 
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Fig. 3. Simulation and experimental values of the reference (REF) and validation control (CTL) processes for biomass (A), 2,3-butanediol (B), and acetoin 
(C). The simulation is depicted as line (full and dotted) and experimental data as markers (different markers for duplicates). The difference between the REF and 
the CTL process is only the process length due to different max𝐺con (CTL: full line & 𝐺con ≤ 175 g, REF: full and dotted line & 𝐺con ≤ 200 g). The vertical dashed 
gray lines represent the borders of the three stages of the process: the lag phase (L), the aerobic stage (S1), and the microaerobic stage (S2). Experimental data was 
lag-corrected (Methods Section 2.2.3).

Fig. 4. Optimal solution space of 2,3-butanediol production processes for 𝐺con ≤ 200 g (panel A) and 𝐺con ≤ 175 g (panel B). The shaded (colors and gray) area 
indicates feasible solutions and the colored subarea represents processes where all the glucose is consumed given a fixed process length (𝑇 , black dashed lines) and 
minimal growth rates (𝜇, colors). Plus and cross markers represent reference (REF, [1]) and validation (CTL, MXP) experiments. The star markers represent the 
results of the CTL, and MXP simulations. The dotted black line represents an extrapolation of the trade-off Pareto front (A: 𝑦 =−0.00285𝑥2 +0.264𝑥 −3.70, 𝑅2 > 0.99; 
B: 𝑦 = −0.00319𝑥2 + 0.254𝑥 − 2.84, 𝑅2 > 0.99).
[1]. The close match between the simulations and experimental data 
gives us the confidence to proceed with further theoretical analyses.

Next, we optimized the 2,3-butanediol production process using dy-

namic control flux balance analysis (dcFBA), with growth (serving as a 
proxy for oxygen consumption) as the control variable, subject to three 
major constraints:

(i) The total glucose consumption in each process was limited to at 
most 200 g, see Supplementary Fig. S3.

(ii) The total process length (𝑇 ) was fixed.

(iii) The minimal achievable specific growth rate (min𝜇) was fixed 
throughout the process.

Based on these settings, we computed and analyzed the maximum 
achievable productivity () and titer ( ) as functions of process length 
and minimal growth rate (Fig. 4A). The shaded (colors and gray) area 
3854

characterizes feasible 2,3-butanediol production processes. The colored 
subspace indicates all processes where glucose is fully consumed. Col-

ors indicate the minimal 𝜇 constraint, while dashed black lines represent 
the same 𝑇 constraint. We mention that the zigzag inner boundary of 
the colored area is due to unavoidable sampling of the solution space 
and numerical instabilities at the edge of the feasible region.

In the following, we will focus our analysis on the colored area and 
make several observations:

(i) All optimal processes (except for poorly performing cases at the 
inside border of the solution space) are two-stage processes with 
constant growth rates in each stage. Biomass is rapidly produced 
under aerobic conditions, followed by a switch to microaerobic 
conditions for 2,3-butanediol production. Therefore, we can focus 
solely on the timing of the switch between them.

(ii) For a constant process length, both maximum productivity and 

titer increase as the minimal possible growth rate decreases.
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Table 1

Overview of the process metrics of REF [1] and validation processes CTL and MXP.

𝑋 was not measured at every time point, thus 𝐵∕𝑋 was calculated at adjacent time points 
given in the far right column.

Run Replicate 𝑇   𝐵∕𝐺con
𝐵∕𝐺con

𝐵∕𝑋 (𝑇 )

h gL−1 gL−1 h−1 gg−1 molmol−1 gg−1 (h)

REF A 64.6 65.3 1.01 0.33 0.67 6.63 ( 64.6)

REF B 58.8 58.2 0.99 0.29 0.57 6.73 ( 58.8)

CTL A 45.9 44.2 0.96 0.24 0.49 4.62 ( 45.7)

CTL B 45.9 42.9 0.93 0.25 0.50 4.33 ( 45.7)

MXP A 23.8 44.5 1.87 0.26 0.52 2.45 ( 23.8)

MXP B 23.8 47.4 1.99 0.27 0.54 2.70 ( 23.7)
Fig. 5. Influence of the relative first stage length (𝑡S1∕𝑇 ) on the titer ( ) and 
productivity () for min 𝜇 = 0.005 h−1. For processes in the trade-off region 
(𝑇 ≥ 22 h),  increases with the relative length of 𝑡S1∕𝑇 and  decreases.

(iii) For short processes (𝑇 ≤ 22 h), increasing the process duration 
enhances both maximum productivity and titer.

(iv) Maximum productivity is achieved for 𝑇 = 22 h at the lowest pos-

sible minimal growth rate.

(v) For long processes (𝑇 > 22 h), maximum productivity decreases 
while the titer increases, resulting in a trade-off.

(vi) In the trade-off region (𝑇 > 22 h), productivity increases with the 
relative length of the first stage (𝑡S1∕𝑇 ), assuming all glucose and 
acetoin are fully converted into 2,3-butanediol (Fig. 5).

(vii) The maximum titer is reached with the largest simulated 𝑇 = 70 h
at the lowest possible minimal growth rate.

(viii) For fixed productivity, maximum titer depends non-monotonic-

ally on minimum growth rate (Supplementary Fig. S4).

(ix) Variation the lower bound of 𝜇 (i.e., coloring of Fig. 4) was done 
to investigate the sensitivity of the process with respect to 𝜇. 
Interestingly, in the proportionality region sensitivity is small, 
however, in the trade-off region, it is considerable.

To further explore our observation (ii) “maximum productivity and 
titer increase as the minimal possible growth rate decreases”, we com-

pare individual fermentations for a fixed process length of 𝑇 = 22 h, as 
shown in Supplementary Fig. S5. When cells grow at the highest feasi-

ble minimal growth rate, they undergo essentially a one-stage growth 
process, resulting in the lowest productivity of 1.35 g L−1 h−1. In this 
scenario, biomass is rapidly produced from the available glucose, and 
2,3-butanediol is generated in a growth-coupled manner without further 
conversion of the simultaneously produced acetoin.

For higher productivity, a two-stage process proves more effective 
because it utilizes the acetoin produced in the first stage. However, 
with a minimal 𝜇 of 0.134 h−1, acetoin is only partially converted to 
2,3-butanediol (Supplementary Fig. S5). Maximum productivity [ob-
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servation (iv)] is achieved when all acetoin is fully converted to 2,3-
butanediol, highlighting the advantage of a reduced growth rate that 
allows complete conversion.

To give more information about observation (vi) and Fig. 5, we 
plotted Supplementary Fig. S6. There, it is visible that although the to-

tal process length 𝑇 increases with 2,3-butanediol titer  , the relative 
length of the first stage 𝑡S1∕𝑇 is reduced.

3.3. Validation experiments

In Fig. 4A, the light blue markers represent the performance metrics 
of the reference process (REF) [1], which is also shown in Fig. 3. This 
reference process operated near optimal conditions for high titer (Sup-

plementary Fig. S7). To validate our simulations, we explore the trade-

off between productivity and titer and design and experimentally verify 
(in duplicates) a 2,3-butanediol production process that increases pro-

ductivity rather than titer. As suggested by observation (vi), the length 
of the first stage (including the lag time, 𝑡LS1) was increased by 5 h re-

sulting in the MXP process. The results of the validation experiments are 
shown in Fig. 6 and 3 for the high productivity (MXP) and control (CTL) 
process, respectively. The process controls of MXP increased the aver-

age experimentally validated productivity by 104 % compared to CTL 
(Table 1).

In contrast to the optimal  process, which was experimentally repli-

cated very closely (REF, CTL), we designed our MXP more conserva-

tively to the optimal  predictions. The simulations showed a general 
improvement in productivity when extending 𝑡S1, however, in the op-

timum 𝑡S2 would be extremely short. As we were considering some 
biological delay which is not captured by the simulations, we settled 
on a slightly shorter 𝑡S1 (Supplementary Fig. S7).

Due to bioprocess constraints, the validation experiments were per-

formed with 𝐺con ≤ 175 g. Therefore, we recalculated the process solu-

tion space for this amount of glucose, and compared it to  and  of 
CTL and MXP (Fig. 4B).

Comparing REF (on which the simulations are based) and CTL vali-

dation experiments shows some deviation in the biomass concentrations 
(Fig. 3A). This variation could be due to switching the process reactor 
system, which may have introduced an inconsistency.

Additionally, in Fig. 6C, there is a drop in the acetoin concentration 
in stage 1 of the process. This drop coincides with a temporary exhaus-

tion of glucose in the reactor before it is replenished again. We believe 
that during this brief period of glucose depletion, acetoin is consumed 
by the cells.

3.4. Continuous process simulations

To further increase the productivity of the 2,3-butanediol production 
process, we designed and simulated a continuous two-reactor biopro-

cess. In this setup, the aerobic and microaerobic stages occur simultane-

ously in two separate reactors, rather than being separated temporally. 
We optimized the process for productivity by using feed rate and glu-

cose concentration (in the feed) as control variables while imposing 
constraints on the feasible biomass concentration and requiring com-
plete glucose consumption. The result of this optimization is shown in 
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Fig. 6. Simulation and experimental values of the MXP process for biomass (A), 2,3-butanediol (B), and acetoin (C). The simulation is depicted as line (full 
and dotted) and experimental data as markers (different markers for duplicates). The full line and markers indicate a process with 𝐺con ≤ 175 g, the dotted line 
indicates an extrapolation to 𝐺con ≤ 200 g. The vertical dashed gray lines represent the borders of the three stages of the process: the lag phase (L), the aerobic stage 
(S1), and the microaerobic stage (S2). Experimental data was lag-corrected (Methods Section 2.2.3).
Fig. 7. Optimal productivity two-reactor continuous process simulation

where reactor A is run aerobically and reactor B is run microaerobically. The 
steady state concentrations are given in Supplementary Table S2 and the process 
metrics are given in Supplementary Table S3.

Fig. 7. The steady-state concentrations of all state variables and rele-

vant process metrics are summarized in Supplementary Table S2 and 
Supplementary Table S3, respectively.

In the optimized two-reactor setup, the first reactor operates under 
aerobic condition, while the second operates under microaerobic condi-

tion. With a glucose feed rate of 25.2 g L−1 h−1, the simulated process 
could achieve microbial conversion to 2,3-butanediol with a titer of 
35.9 g L−1 and a productivity of 6.80 g L−1 h−1. Even when constrain-

ing the titer to a minimal commercially viable value of  ≥ 50 g L−1 as 
suggested by [12], our two-stage chemostat simulations predict more 
than double the productivity of a fed-batch process ( = 5.53 g L−1 h−1, 
Supplementary Fig. S8 and Table S3.)

4. Discussion

Biobased 2,3-butanediol is a promising green platform chemical for 
various industries, but it faces significant economic hurdles compared to 
traditional petrochemical processes derived from crack gases. Although 
the petrochemical route is costly and energy-intensive [4], it remains 
competitive due to established infrastructure. In contrast, biobased 2,3-

butanediol, though more environmentally friendly, struggles with high 
production costs driven by expensive fermentation media and complex 
processing. To be cost-competitive, biobased 2,3-butanediol production 
requires significant advancements in efficiency, scale, and cost reduc-
3856

tion to replace petrochemical methods.
Building on our previous work [1], we developed and implemented 
a dynamic control algorithm [30] to optimize the feeding strategy and 
timing for a two-stage fed-batch process aimed at 2,3-butanediol pro-

duction using a genetically modified E. coli strain. In the first stage, 
under aerobic conditions, cellular biomass increases rapidly while ace-

toin and 2,3-butanediol are simultaneously produced. During the tran-

sition to microaerobic conditions, the growth rate decreases, while 2,3-

butanediol production increases to regenerate NAD+ . In addition, the 
cells (re-)utilize any acetoin produced in the first stage and convert it 
into 2,3-butanediol.

Interestingly, although our dynamic control algorithm could contin-

uously adjust the transition from aerobic to microaerobic conditions, the 
ideal process operates as a two-stage system: with maximum growth rate 
during the first stage and maximum acetoin uptake and 2,3-butanediol 
synthesis during the second stage. Within this design space, we find two 
specific optimal designs:

• The titer-optimal solution is characterized by a microaerobic stage 
that lasts as long as possible. In this scenario, the aerobic stage is de-

signed only to ensure that all glucose is consumed. If all glucose can 
be consumed during the microaerobic stage, the process effectively 
becomes a single-stage process, with the titer- and yield-optimal so-

lutions coinciding.

• The productivity-optimal solution is characterized by maximizing 
acetoin production during the aerobic phase, where biomass growth 
occurs at its highest rate and both acetoin and 2,3-butanediol are 
produced in a growth-coupled manner. In the subsequent microaer-

obic phase, 2,3-butanediol production is upregulated but further 
boosted by converting the accumulated acetoin into 2,3-butanediol. 
Maximum productivity is then achieved when all acetoin from the 
aerobic phase is fully converted to 2,3-butanediol in the microaero-

bic phase, aligned with the complete consumption of glucose. This 
approach maintains maximum 2,3-butanediol production for as long 
as acetoin is available, with productivity declining only after the ace-

toin is depleted.

Between these two optimal points, we observe a standard trade-off re-

gion, where increasing titer comes at the expense of reduced productiv-

ity, and vice versa [35]. This trade-off can be experimentally explored 
by varying the relative lengths of the two stages, a design parameter 
that our algorithm can accurately predict.

We remark that the productivity-optimal solution establishes a mini-

mum required process length. For processes shorter than this minimum, 
both titer and productivity can be increased simultaneously; thus, such 
shorter processes are economically unappealing.

To further increase productivity, a promising strategy is to reduce 

the minimum required process length. This length is inversely related 
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to the maximum growth rate and diol production rate, making the use 
of faster-growing cells essential. For example, employing fast-growing 
strains like Vibrio natriegens and Bacillus licheniformis has already yielded 
promising results [25,36].

Chemostats are known for their high productivity. However, in our 
case, the growth and production phases occur under different condi-

tions, requiring spatial separation in a multistage chemostat setup. Our 
simulations suggest that a two-stage chemostat could more than dou-

ble productivity while maintaining high titers, potentially making the 
process truly economically viable [12]. However, these results may be 
overly optimistic, as challenges such as maintaining sterility during long 
runs and the risk of mutations were not considered, which continue to 
hinder the widespread adoption of continuous processes in biotechno-

logical production [37].

Recently, we conducted a bioprocess optimization study using clas-

sical dynamic FBA (dFBA) for a two-stage fed-batch process [19]. Since 
dFBA was originally designed for process simulation rather than op-

timization, we had to employ a brute-force search to determine the 
optimal stage switching time points. In contrast, dcFBA enables the iden-

tification of the optimal switch time within given constraints in a single 
optimization run, significantly reducing computational time depending 
on the brute-force method’s resolution. Nevertheless, dcFBA was de-

veloped to result in a single optimized bioprocess. To uncover multi 
objective solution spaces (i.e., Fig. 4) additional algorithmic advances 
such as the normal boundary intersection method [38] may further re-

duce the computational cost required.

5. Conclusion

In this study, we apply a recently developed process optimization 
method, dynamic control flux balance analysis (dcFBA), to analyze the 
design space for optimal 2,3-butanediol production in fed-batch fermen-

tation. Our simulations show that the optimal productivity-titer solution 
space consists of two distinct regions: a proportionality region and a 
trade-off region. In the proportionality region, both productivity and 
titer increase with longer process durations, but this region represents 
economically suboptimal processes. In contrast, the trade-off region is 
characterized by a decrease in productivity as process length increases, 
while titer continues to rise. At opposite ends of this region, we iden-

tify the titer-optimal and productivity-optimal processes, with the latter 
defining a minimum process length for economic viability. Our 2,3-

butanediol production experiments conducted in duplicates validate 
these simulations.

Finally, simulations of continuous two-reactor fermentation indicate 
that further productivity gains are achievable.

Our study highlights the significant potential for improving bio-

production processes and positions in silico process modeling as a pow-

erful and reliable tool for efficiently exploring and optimizing process 
solution spaces, substantially reducing the effort and cost associated 
with traditional experimental methods.
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