
Systems biology

ecmtool: fast and memory-efficient enumeration of

elementary conversion modes

Bianca Buchner1, Tom J. Clement2, Daan H. de Groot3* and Jürgen Zanghellini 4,*

1acib GmbH, Austrian Centre of Industrial Biotechnology, 1190 Vienna, Austria, 2Systems Biology Lab, Vrije Universiteit, 1081HV

Amsterdam, The Netherlands, 3Biozentrum, Swiss Institute of Bioinformatics, University of Basel, 4056 Basel, Switzerland and
4Department of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria

*To whom correspondence should be addressed.

Associate Editor: Lenore Cowen

Received on July 18, 2022; revised on November 8, 2022; editorial decision on February 18, 2023; accepted on February 20, 2023

Abstract

Motivation: Characterizing all steady-state flux distributions in metabolic models remains limited to small models
due to the explosion of possibilities. Often it is sufficient to look only at all possible overall conversions a cell can
catalyze ignoring the details of intracellular metabolism. Such a characterization is achieved by elementary conver-
sion modes (ECMs), which can be conveniently computed with ecmtool. However, currently, ecmtool is memory
intensive, and it cannot be aided appreciably by parallelization.

Results: We integrate mplrs—a scalable parallel vertex enumeration method—into ecmtool. This speeds up com-
putation, drastically reduces memory requirements and enables ecmtool’s use in standard and high-performance
computing environments. We show the new capabilities by enumerating all feasible ECMs of the near-complete
metabolic model of the minimal cell JCVI-syn3.0. Despite the cell’s minimal character, the model gives rise to
4:2� 109 ECMs and still contains several redundant sub-networks.

Availability and implementation: ecmtool is available at https://github.com/SystemsBioinformatics/ecmtool.

Contact: daanhugodegroot@gmail.com or juergen.zanghellini@univie.ac.at

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Understanding the genotype–phenotype relation is key in systems
biology. Constraint-based modeling is one method to approach this
question. Given an organism-specific genome-scale metabolic model
(GSMM), all steady-state capabilities of that organism can be under-
stood as conic combinations of minimal pathways (Schuster and
Hilgetag, 1994), known as elementary flux modes (EFMs). A full
EFM analysis remains limited to core metabolic models (Buchner
and Zanghellini, 2021). However, many EFMs show identical stoi-
chiometric net conversions from nutrients to products. Thus, it
should be easier to characterize ‘only’ an organism’s metabolic inter-
action with its environment than to determine how this is achieved.
Elementary conversion modes (ECMs) achieve precisely that. ECMs
form a minimal set of steady-state net conversions (Urbanczik and
Wagner, 2005), whose conic combinations represent all feasible bio-
transformations an organism can perform. Recently, we published
ecmtool (Clement et al., 2021), which enumerates ECMs in meta-
bolic models. However, ecmtool’s current implementation is mem-
ory intensive, prohibiting large-scale networks’ analysis. We present
an update to ecmtool that eliminates memory limitations and
speeds up enumeration by parallel computation. To illustrate the

new capabilities, we compute all ECMs in the GSMM of the syn-

thetic minimal cell JCVI-syn3A growing on a complex medium.

2 Approach

ECMs are minimal generators of the space C of steady-state conver-
sions given by the model’s stoichiometric matrix N (Clement et al.,
2021),

C ¼ f ċ ¼ Nr j ci ¼ 0 for i 2 Int; rj � 0 for j 2 Irrev g: (1)

Here, the internal concentrations ci; i 2 Int are in steady-state, and

irreversible fluxes rj � 0, j 2 Irrev are non-negative. Finding the
minimal set of generators of (1) can be reduced to twice solving a

vertex/ray enumeration (VE) problem of a convex polyhedron
(Clement et al., 2021), see Figure 1c. For these steps, ecmtool uses
a double-description algorithm implemented in polco (Terzer and

Stelling, 2008). polco is memory intensive. It starts with a set of
‘candidate-ECMs’, which it then refines until the full set is found;

the number of candidate-ECMs at intermediate steps can be huge
and always needs to be kept in memory. We replaced polco with a

VC The Author(s) 2023. Published by Oxford University Press. 1

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 39(3), 2023, btad095

https://doi.org/10.1093/bioinformatics/btad095

Advance Access Publication Date: 21 February 2023

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/3/btad095/7049479 by Institute for Theoretical C
hem

istry and Structural Biology user on 05 N
ovem

ber 2024

https://orcid.org/0000-0002-1964-2455
https://github.com/SystemsBioinformatics/ecmtool
https://academic.oup.com/


parallelized, and memory-efficient lexicographic reverse search
(LRS) implemented in mplrs (Avis and Jordan, 2018). LRS reverses
the simplex method. It first finds a vertex/ray on the polyhedron,
moves along the edges of the polyhedron and traces back all starting
points that return that initial vertex in linear optimization. These
starting points are the ECMs, and a unique path visits every ECM
only once. Thus, no ECM needs to be stored, resulting in minimal
memory requirements. Moreover, LRS can be split into independ-
ent, non-communicating sub-problems that can be efficiently
parallelized.

ecmtool’s design is shown in Figure 1c. mplrs is the default,
and users specify the number of threads via the command line.

3 Results and discussion

We enumerated all ECMs in a GSMM of the synthetic minimal cell
JCVI-syn3A (Breuer et al., 2019) with ecmtool. The model con-
tains 304 metabolites, 338 reactions (incl. 69 exchange reactions)
and 155 genes. Within 2.6 weeks, we enumerated 4 212 839 045
ECMs using 60 threads.

In Figure 1a, we compare the length of the two VE phases. With
polco VE1 takes about 1 s independent of the medium’s complex-
ity, while mplrs run time rises from 10 s to 1 min. However, for
increasing model size the length of VE2 increases exponentially for
both algorithms and quickly dominates total run time. During this
phase, mplrs is on average 2:8� faster than polco. Moreover,
with 15 extra medium components, mplrs finished within 5.7 h
using 20 threads, while polco was terminated after 2 days as it did
not finish within twice the expected run time. At this point, polco
was severely limited by memory consumption reaching 300 GB,
Figure 1b. mplrs, however, required far less than 1 GB even for the
largest model with 22 excess medium components. With mplrs
more threads reduce the run time further as it almost ideally scales
with the number of threads; see Supplementary Figure S1. In

contrast, polco is not designed for parallelization and thus does not
benefit from adding more threads. Finally, we verified that mplrs
and polco computed identical sets of ECMs. Thus, the updated
ecmtool is faster, more resource conservative than its predecessor,
and enables analysis at a previously infeasible scale.

Although there are differences in the spectra of byproducts that
can be produced from individual nutrients (Supplementary Fig. S3),
we found that the number of ECMs in JCVI-syn3A approximately
doubles with each added nutrient (Supplementary Fig. S2). Such be-
havior is consistent with a bow-tie structure of metabolism, where a
range of essentially independent nutrients fan in a highly redundant
core (Csete and Doyle, 2004).

We computed all ECMs and EFMs in JCVI-syn3A growing on
only an essential subset of the nutrients and verified that all projec-
tions of EFMs on the set of exchange reactions are either identical to
an ECM (12.56% of all EFMs) or a conic combination of ECMs
(87.44% of all EFMs).

In the former group, we find that every ECM gives the net con-
version for on average 23 EFMs (Supplementary Fig. S4), which
indicates high redundancy in the network. For example, 3426 ECMs
encoded 20 EFMs each. These 20 EFMs were constructed from
the combination of four ‘modules’ of two parallel enzymes plus
one futile cycle coupled to each module (24 þ 1� 4 ¼ 20, see
Supplementary Fig. S5) in the nucleotide metabolism. Similar multi-
plicative growth in the number of EFMs due to metabolic modules
has been previously observed (Kelk et al., 2012).

The latter group indicates that in JCVI-syn3A, most EFMs repre-
sent stoichiometrically coupled production (or consumption) of (ex-
ternal) metabolites, which alone are produced (or consumed) more
efficiently.

4 Conclusions

We presented an update to ecmtool that uses mplrs (Avis and
Jordan, 2018) for parallelized ECM enumeration. The current ver-
sion was three times faster and showed negligible memory consump-
tion. ecmtool runs in any environment, from small computer
clusters to high-performance computing systems, but benefits much
more from large-scale parallelization than before. We enumerated
all ECMs in the synthetic minimal cell JCVI-syn3.0 growing on
complex media. ecmtool was able to characterize all metabolic
interactions within 2.6 weeks using 60 threads. This scaling step
paves the way to, e.g. unbiased study emerging properties of micro-
bial metabolic interactions in (small) communities.

Financial Support: None declared.

Conflict of Interest: None declared.

References

Avis,D. and Jordan,C. (2018). mplrs: A scalable parallel vertex/facet enumer-

ation code. Math. Program. Comput., 10(2), 267–302.

Breuer,M. et al. (2019) Essential metabolism for a minimal cell. eLife, 8,

e36842.

Buchner,B. and Zanghellini,J. (2021) EFMlrs: a Python package for EFM enu-

meration via lexicographic reverse search. BMC Bioinformatics, 22, 547.

Clement,T. et al. (2021) Unlocking elementary conversion modes: ecmtool

unveils all capabilities of metabolic networks. Patterns, 2, 100177.

Csete,M. and Doyle,J. (2004) Bow ties, metabolism and disease. Trends

Biotechnol., 22, 446–450.

Kelk,S.M. et al. (2012) Optimal flux spaces of genome-scale stoichiometric

models are determined by a few subnetworks. Sci. Rep., 2, 580.

Schuster,S. and Hilgetag,C. (1994) On elementary flux modes in biochemical

reaction systems at steady state. J. Biol. Syst., 02, 165–182.

Terzer,M. and Stelling,J. (2008) Large-scale computation of elementary flux

modes with bit pattern trees. Bioinformatics, 24, 2229–2235.

Urbanczik,R. and Wagner,C. (2005) Functional stoichiometric analysis of

metabolic networks. Bioinformatics, 21, 4176–4180.

Fig. 1. (a) Run time and (b) memory consumption of ecmtool using mplrs

(squares) or polco (circles) as a function of the number of excess nutrients in the

minimal medium of JCVI-syn3A. Empty and full symbols indicate VE1 and VE2, re-

spectively; see (a). 20 and 60 (shaded area) threads were used. Shaded data are true

values scaled with 60/20. polco’s java machine was restricted to 300 GB. For 15

medium components, ecmtool (polco) was aborted after 2 days without progress.

(c) Structogram of ecmtool. The circle marks the model with 10 components used

for a scaling study shown in Supplementary Figure S1

2 B.Buchner et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/3/btad095/7049479 by Institute for Theoretical C
hem

istry and Structural Biology user on 05 N
ovem

ber 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad095#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad095#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad095#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad095#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad095#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad095#supplementary-data

